Arithmetic Progressions and Binary Quadratic Forms

نویسندگان

  • Ayse Alaca
  • Saban Alaca
  • Kenneth S. Williams
چکیده

is a (nonconstant) arithmetic progression of positive integers. We consider a general binary quadratic form ax2 + bxy + cy' ( a , b , c E Z ) and ask the question "Can the form ax' + hxy + ry' represen1 every inleger in 1he arithmetic progression kNo + 1 for any natural numbers k and l?" In a sampling of books containing a discussion of binary quadratic forms [2]-[9], we did not find this qustlon treated. In answering our question we shall see that the discriminant d = b' 4ac E Z of the form ax' + bxy + cy2 plays a key role. We prove:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Five Squares in Arithmetic Progression over Quadratic Fields

We give several criteria to show over which quadratic number fields Q( √ D) there should exists a non-constant arithmetic progressions of five squares. This is done by translating the problem to determining when some genus five curves CD defined over Q have rational points, and then using a Mordell-Weil sieve argument among others. Using a elliptic Chabauty-like method, we prove that the only n...

متن کامل

Advanced Algebra

This chapter establishes Gauss’s Law of Quadratic Reciprocity, the theory of binary quadratic forms, and Dirichlet’s Theorem on primes in arithmetic progressions. Section 1 outlines how the three topics of the chapter occurred in natural sequence and marked a transition as the subject of number theory developed a coherence and moved toward the kind of algebraic number theory that is studied tod...

متن کامل

Secondary Terms in Counting Functions for Cubic Fields

We prove the existence of secondary terms of order X in the Davenport-Heilbronn theorems on cubic fields and 3-torsion in class groups of quadratic fields. For cubic fields this confirms a conjecture of Datskovsky-Wright and Roberts. We also prove a variety of generalizations, including to arithmetic progressions, where we discover a curious bias in the secondary term. Roberts’ conjecture has a...

متن کامل

Arithmetic progressions of four squares over quadratic fields

Let d be a squarefree integer. Does there exist four squares in arithmetic progression over Q( √ d )? We shall give a partial answer to this question, depending on the value of d. In the affirmative case, we construct explicit arithmetic progressions consisting of four squares over Q( √ d ).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2008